From 1 - 10 / 24
  • <p>Australia has a significant number of surface sediment geochemical surveys that have been undertaken by industry and government during the past 50 years. These surveys represent a vast investment, but up to now have been used in isolation from one another. The key to maximising the full potential of these data and the information they provide for mineral exploration, environmental management and agricultural purposes is using all surveys together, seamlessly. These geochemical surveys have not only sampled various landscape elements but have used multiple analytical techniques, instrumentation and laboratories. The geochemical data from these surveys need to be levelled to eliminate, as much as possible, non-geological variation. Using a variety of methodologies, including reanalysis of both international standards and small subsets of samples from previous surveys, we have created a seamless surface geochemical map for northern Australia, from nine surveys with 15605 samples. We tested our approach using two surveys from the southern Thomson Orogen, which removed interlaboratory and other analytical variation. Creation of the new combined and levelled northern Australian dataset paves the way for the application of statistical techniques, such as principal component analysis and machine learning, which maximise the value of these legacy data holdings. The methodology documented here can be applied to additional geochemical datasets that become available. <p><b>Citation:</b> Main, P. T. and Champion, D. C., 2020. Geochemistry of the North Australian Craton: piecing it together. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <p>Understanding the geological evolution and resource prospectivity of a region relies heavily on the integration of different geological and geophysical datasets. Geochronology is one key dataset, as it underpins meaningful geological correlations across large regions, and also contributes to reconstruction of past tectonic settings. Using geochronology in combination with other datasets requires the geochronology data to be available in a unified dataset with a consistent format. Northern Australia is a vast and relatively underexplored area that offers enormous potential for the discovery of mineral and energy resources. The area has a long and variably complex tectonic history, which is yet to be fully understood. Numerous geochronology studies have been completed at various scales throughout northern Australia over several decades; however, these data are scattered amongst numerous sources, limiting the ease with which they can be used collectively. <p>The objective of this work is: <p>(1) to combine Uranium–Lead (U–Pb) data across north-northeastern Australia into one consistent dataset, and <p>(2) to visualise the temporal and spatial distribution of the U–Pb age data through thematic maps as a tool for better understanding the geological evolution and resource potential of northern Australia. <p>In this contribution, over 2000 U–Pb ages from the Northern Territory, Queensland, eastern Western Australia and northern South Australia have been compiled into a single, consistent dataset. Data were sourced from Geoscience Australia, State and Territory geological surveys and from academic literature. The compilation presented here includes age data from igneous, metamorphic and sedimentary rocks. Thematic maps of magmatic crystallisation ages, high-grade metamorphic ages and sedimentary maximum depositional ages have been generated using the dataset. These maps enable spatial and temporal trends in the rock record to be visualised up to semi-continental scale and form a component of the ‘Isotopic Atlas’ of northern Australia currently being compiled by Geoscience Australia.

  • The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) aims to collect long period magnetotelluric data on a half degree grid across the Australian continent. Data were collected in northern Australia under Geoscience Australia’s Exploring for the Future (EFTF) program from 2016 to 2019. This survey covers the area in south parts of Northern Territory and north western region of Queensland. The project aims to improve understanding of the lithospheric structure in northern Australia. It also provide pre-competitive data and knowledge for selecting mineral prospective areas in the under-explored and covered regions. This data package contains the preferred resistivity model and associated information for the project. The report provides details for data acquisition, data process and data inversion. The results provide new insights on the lithospheric architecture and mineral potential in the region.

  • The Exploring for the Future Project Areas web service depicts the spatial extents of project work undertaken as part of Geoscience Australia's $100.5 million initiative dedicated to boosting investment in resource exploration in Australia. Each project area extent has been generated by aggregating all project work sites into an envelope polygon. An indicative spend on each f the projects is also given.

  • Newer version v1.1 available at eCat <a href="https://pid.geoscience.gov.au/dataset/ga/147720">147720</a> Isotopic data from rocks and minerals have the potential to yield unique insights into the composition and evolution of the Earth's crust and mantle. Time-integrated records of crust and mantle differentiation (as preserved by the U-Pb, Sm-Nd and Lu-Hf isotopic systems, for example) are important in a wide range of geological applications, especially when successfully integrated with other geological, geophysical, and geochemical datasets. However, such integration requires (i) compilation of comprehensive isotopic data coverages, (ii) unification of datasets in a consistent structure to facilitate inter-comparison, and (iii) easy public accessibility of the compiled and unified datasets in spatial and tabular formats useful and useable by a broad range of industry, government and academic users. This constitutes a considerable challenge, because although a wealth of isotopic information has been collected from the Australian continent over the last 40 years, the published record is fragmentary, and derived from numerous and disparate sources. Unlocking and harnessing the collective value of isotopic datasets will enable more comprehensive and powerful interpretations, and significantly broaden their applicability to Earth evolution studies and mineral exploration. As part of the Exploring for the Future (EFTF) program (https://www.ga.gov.au/eftf), we have designed a new database structure and web service system to store and deliver full Lu-Hf isotope and associated O-isotope datasets, spanning new data collected during research programs conducted by Geoscience Australia (GA), as well as compiled literature data. Our approach emphasises the links between isotopic measurements and their spatial, geological, and data provenance information in order to support the widest possible range of uses. In particular, we build and store comprehensive links to the original sources of isotopic data so that (i) users can easily track down additional context and interpretation of datasets, and (ii) generators of isotopic data are appropriately acknowledged for their contributions. This system delivers complete datasets including (i) full analytical and derived data as published by the original author, (ii) additional, normalised derived data recalculated specifically to maximise inter-comparability of data from disparate sources, (iii) metadata related to the analytical setup, (iv) a broad range of sample information including sampling location, rock type, geological province and stratigraphic unit information, and (v) descriptions of (and links to) source publications. The data is delivered through the Geoscience Australia web portal (www.portal.ga.gov.au), and can also be accessed through any web portal capable of consuming Open Geospatial Consortium (OGC)-compliant web services, or any GIS system capable of consuming Web Map Services (WMS) or Web Feature Services (WFS). This Record describes the database system and web service tables. It also contains full tabulated datasets for data compiled from the North Australian Craton as part of the EFTF program. These data are predominantly micro-analytical zircon analyses which are linked at the spot-level across Lu-Hf, O, and U-Pb measurements. This data release comprises 5974 individual analyses from 149 unique rock samples.

  • Digital Earth Australia (DEA) is a key piece of public data infrastructure that uses images and information recorded by satellites orbiting our planet to detect physical changes across Australia in unprecedented detail. Landsat 5, 7 and 8 ‘analysis-ready’ data are currently available within DEA, where the raw satellite data have been corrected and orthorectified to enable easy interrogation of data across sensors. Geoscience Australia is developing techniques for analysing the data within DEA to identify wetlands and groundwater dependent ecosystems across northern Australia. These techniques include summarising observations of ‘wetness’ acquired over 30 years and linking these observations to gridded rainfall measurements to identity waterbodies and wetlands that persist during periods of low rainfall. These wetness summaries have been shown to correspond with known spring complexes in the Carmichael River catchment in Queensland, and have been used to improve the understanding of groundwater discharge processes within basalt provinces in the Upper Burdekin region in Queensland. This poster was submitted/presented to the 2018 Australian Geoscience Council Convention (AGCC) 14-18 October (https://www.agcc.org.au/)

  • This dataset contains the limit and extent of Northern Australia as defined by the Northern Australia Infrastructure Facility Act 2016 (https://www.legislation.gov.au/Details/C2021C00228) and Northern Australia Infrastructure Facility Amendment (Extension and Other Measures) Act 2021 (https://www.aph.gov.au/Parliamentary_Business/Bills_Legislation/bd/bd2021a/21bd062).

  • Developing Northern Australia Map produced on request for the Office of Northern Australia. It highlights development in northern Australia, indicating major mineral and energy resource projects, mineral deposits, and major infrastructure. It also incorporates data from other Government agencies, providing key information used to inform decision makers in the region such as environmental data, location of indigenous communities, native title determinations, and indigenous land use agreements.

  • This dataset contains the limit and extent of Northern Australia as defined by Northern Australia Infrastructure Facility Act 2016 (https://www.legislation.gov.au/Details/C2016A00041).

  • This report provides a preliminary assessment of the utility of a satellite remote sensing approach for the identification and characterisation of coastal habitats that are critical for threatened and migratory species in northern Australia. This work is part of the Habitats research theme in the A12 Northern Seascapes Scoping Project. The Australian Landsat archive in the Digital Earth Australia (DEA) analysis platform for satellite imagery was utilised to demonstrate its potential for mapping intertidal areas and mangrove extent, and changes over time in the extent of coastal landforms and habitats. Seven estuaries were examined, Darwin Harbour and the Keep, Daly, Roper, Macarthur, Flinders and Gilbert River estuaries. The estuaries were selected by the A12 Project team because they are known to provide important areas for the species of interest. Features of importance to shorebird populations were a focus. The focus of this scoping work was to utilise the DEA Landsat archive to build understanding of the effects of tidal dynamics on intertidal habitats across this region of large and complex tides, examine approaches to mapping the extent of key coastal habitats, and test the potential of the archive to detect coastal habitat change, in particular mangrove. In northern Australia, cloud interference can make it difficult to obtain clear satellite imagery. To avoid this issue, the geometric median of surface reflectance values was used to produce crisp, cloud-free composite images that depict the maximum observed tidal extent in the seven estuaries. Tide-tagging of satellite imagery was also successfully employed to allow any tide induced change to be removed from change-detection analyses and clearly depict the intertidal extent. Application of the Intertidal Extent Model in the DEA enabled the extent and morphology of estuarine intertidal environments to be mapped. The DEA also enabled habitat change change detection using the fully processed, high density, three decade long Landsat time series. The results clearly depict the dynamic nature of some areas, including large-scale rapid island growth and mangrove expansion (e.g. Keep River and Gilbert River estuaries), gradual long-term expansion of mangrove (Flinders River and McArthur River estuaries), and estuaries with areas of rapid recent die back of mangrove (Roper River and Flinders estuaries). This information is important for the management of key species as well decisions around coastal developments. With Landsat and new satellite data streams (e.g. Sentinal 2) continually being added to the DEA, this time-series analysis approach could be developed into an effective habitat extent and condition monitoring tool for northern Australia. The image products and analysis tools employed in this study demonstrate the potential utility of DEA for mapping the extent and dynamics of key coastal and estuarine habitats utilised by threatened and migratory species. To better inform the management of these species, a key next step in this approach is to utilise ground-validation data to enable these habitats to be robustly classified and quantified using the Landsat archive. This analysis should provide important baseline information and enable the extent and condition of key habitats to be monitored. <b>Preferred Citation:</b> <i>Phillips, C., Lymburner, L. & Brooke, B. (2018). Characterising northern estuaries using Digital Earth Australia.</i> Report to the National Environmental Science Programme, Marine Biodiversity Hub. <i>Geoscience Australia.</i>